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Numerical simulation of blow-up solutions of the vector nonlinear Schro¨dinger equation

James Coleman* and Catherine Sulem†
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We present numerical simulations of blow-up solutions of the vector nonlinear Schro¨dinger equation, which
arises as the subsonic limit of the vectorial Zakharov system in plasma physics. In the course of our calcula-
tions, we observed the phenomenon of splitting of the solution profile. To capture the structure of the solution,
we developed a new dynamic mesh refinement method based on the iterative grid distribution method intro-
duced by Ren and Wang@J. Comput. Phys.159, 246 ~2000!#. We also applied this method to study the time
dispersion nonlinear Schro¨dinger equation that describes the propagation of ultrashort pulses in a dispersive
medium.
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I. INTRODUCTION

The Zakharov system

i ] tE2a“3~“3E!1“~“•E!5nE,

] ttn2Dn5DuEu2 ~1!

governs the coupled dynamics of the complex envelope
the electric-field oscillations and the low-frequency fluctu
tions of the ions@1# in a quasineutral plasma. In the ‘‘sub
sonic limit,’’ where the density fluctuations are assumed
follow adiabatically the modulation of the amplitude, th
Zakharov system reduces to the vector nonlinear Schro¨dinger
~VNLS! equation

i ] tE2a“3~“3E!1“~“•E!1uEu2E50. ~2!

The dimensionless parametera in Eq. ~1! is given by a
5c2/3ve

2 , wherec is the velocity of light andve is the mean
electron thermal velocity. Sincea contains a factor ofc2 in
the numerator, it is quite large in typical situations. Inde
its value ranges from about 20 for laboratory plasmas
about 23105 for interstellar gas@2#.

We are interested in this paper in collapsing solutions. T
usual approach to the problem of proving blow-up for t
nonlinear Schro¨dinger equation and related systems is
analyze the time evolution of the varianceV(t)
5* uxu2uEu2dx. In the vector case, a general variance iden
can be established@3#,

d2

dt2
S V~ t !12~12a!E

0

tE xi Im@Ei] jEj # D
54aS 2H2

d22

2 E uEu4D , ~3!

where

H5E ~au“E~ t !u21~12a!u“•E~ t !u22 1
2 uE~ t !u4! ~4!
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is the Hamiltonian.
In the special casea51, it yields a blow-up result for

initial conditions with a negative Hamiltonian@4#. However,
for aÞ1 the modified variance no longer has a fixed si
and existence of blow-up solutions is not proved. We th
investigated this question numerically, by performing a ser
of simulations with various values ofa. It is worth noticing
that in two dimensions, there is a symmetry between so
tions corresponding to reciprocal values ofa. If E
5„E1(x1 ,x2 ,t),E2(x1 ,x2 ,t)… is a solution to Eq.~2! corre-
sponding to somea, then the function

E8~x1 ,x2 ,t !5„E1~Aax2 ,Aax1 ,t !,2E2~Aax2 ,Aax1 ,t !…

~5!

is a solution corresponding toa21.
In view of characterizing the limiting profiles of th

blow-up solutions, we started in Sec. II by computing t
ground state~bound state solution of minimal action! of the
corresponding problem

aDR1~12a!“~“•R!2R1uRu2R50. ~6!

We numerically constructed ground states in two and th
dimensions for a range of values ofa. We then performed a
series of simulations of the VNLS equation with various v
ues ofa. In dimension 2, for values ofa close or equal to 1,
we observed that the blow-up properties of the solution
similar to those of solutions of the critical scalar NLS equ
tion. We also observed that the asymptotic profile of the
lution near the point of blow-up resembles the ground st
R up to rescaling~Sec. III!. The calculations were wel
handled by the method of dynamic rescaling@3#. In the
course of these simulations, for values ofa small compared
to one, we encountered the phenomenon of splitting,
which a solution with an initially single-peaked profil
divides into two separate peaks as its amplitude increase
overcome this difficulty, we implemented in Sec. IV a mod
fied version of the iterative grid distribution method intr
duced in Ref.@5#. Our method avoids the iterative procedur
It consists of picturing the mesh as a grid of weighted no
connected by springs. Each spring exerts a force on the
nodes at its end points, which is given in magnitude in ter
on the spring tensionk and the distance between the node
©2002 The American Physical Society01-1
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Each node has a positive weight associated with it. The
sion constant associated with each spring is defined as
arithmetic average of the weights of the two nodes tha
connects. This leads to the construction of a curvilinear m
that adapts dynamically to the function as it evolves by c
centrating mesh points near regions of high amplitude.
Sec. V we apply this method to the VNLS equation in si
ations where splitting occurs. For small values ofa, we ob-
serve that blow-up occurs at two points, and that the pro
near these points is well-described by the ground state u
rescaling. We also consider the limiting casea50 in which
blow-up appears to take a different form. In this case,
gradient normu¹EuL2 blows up, but the divergence norm
u¹•EuL2 remains bounded, while the amplitude increas
very slowly and possibly saturates. In Sec. VI, we fina
apply our method to the time dispersion NLS equation as
ciated with the propagation of ultrashort pulses pass
through a nonlinear medium. Previous computations@6# have
suggested that the normal time dispersion term can ca
multisplitting and a saturation of the amplitude. We confi
these observations and compute the profiles of the solut

II. NUMERICAL SIMULATION OF STANDING-WAVE
SOLUTIONS

We are interested in solutions of the VNLS equation in
form of standing-wave solutions

E~x,t !5exp~ i t !R~x!, ~7!

whereR solves

aDR1~12a!“~“•R!2R1uRu2R50. ~8!

Existence of a solution of Eq.~8! as a minimizer for some
functional is shown in Ref.@7# ~see Ref.@8# for a detailed
proof! using methods of concentration compactness. T
problem of uniqueness~up to the family of gauge transfor
mations under which this equation is invariant! appears to be
quite difficult and at present it is still an open question. T
bound state equation~6! is a nonlinear, vector-valued ellipti
boundary value problem. For the corresponding scalar p
lem with a51, one knows that solutions are radially sym
metric @9#. The equation then reduces to

R91
d21

r
R82R1R350, R8~0!50, R~`!50. ~9!

This problem can be solved numerically by a shoot
method, as done, for example, in Refs.@10,11# in a more
general context.

For the vector case, since solutions are no longer ra
one must work in the full spaceRd ~or at least in a suffi-
ciently larged-dimensional box!. The method that we de
scribe here is based on an iterative procedure that be
with an initial guess and converges rapidly to an exact so
tion. Equation~6! is invariant under phase shifts, rotation
and translations. The three degrees of freedom assoc
with these invariances can be eliminated if we specify t
solutions to Eq.~6! must satisfy the normalization condition
03670
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E~0!5~l,0, . . . ,0!, E xuE~x!u2dx50, ~10!

wherel.0. The first equation specifies the choice ofu and
O, while the second specifies the choice ofx by requiring
that the center of mass ofE be located at the origin. Note
that Eq. ~10! implicitly assumes that bound states do n
vanish at their center of mass. All of the bound states that
construct satisfy this property.

We now describe the method in detail. Fixinga.0, we
look for a solutionE to F(E)50, where

F~E!5aDE1~12a!“~“•E!2E1uEu2E, ~11!

which satisfies Eq.~10!. We construct this function through
the method of quasilinearization, by defining a series of
proximantsE0 ,E1 ,E2 , . . . , which converge to a solutionE.
If Ek is one such approximant and we setek5E2Ek , then to
leading orderen satisfiesLk(ek)5F(Ek), where

Lk~e!5aDe1~12a!“~“•e!2e13uEku2e. ~12!

This motivates the following iterative method. We begin
choosing some initial estimateE0, and we then define a se
quence of functions recursively byEk5Ek211ek21 for k
>1, whereek21 is determined from Eq.~12!. We iterate this
process until for somek we haveuekuL`,e, wheree is some
fixed tolerance. At this pointEk has essentially converged t
a fixed point, which we take to be the desired solutionE.

The linearized differential equationLk(ek)5F(Ek) is dis-
cretized using a finite difference method. We work on t
domain D5@2L,L#d,Rd, where L is chosen to be suffi-
ciently large, and use as approximate boundary conditi
thatE50 on ]D. The differential operators are approximate
by a seven-point scheme in each direction~accurate to sixth
order in h5L/n, wheren is the number of points in eac
direction!, and at the boundary are calculated by extrapo
ing to fictitious points outsideD where en is assumed to
vanish identically. The resulting linear system has the fo
Ax5b, wherex and b are vectors withN5(2n21)d ele-
ments, andA is a sparse positive matrix withN2 elements.
This system is solved by the conjugate-gradient method.

We now consider the problem of choosing an initial es
mateE0. For a51, the ground state that satisfies Eq.~10! is
given by R5(R,0, . . . ,0),whereR is the ground state for
the scalar NLS equation. To findE0 for aÞ1, we make the
assumption thatR varies continuously as a function ofa.
Hence, for values close to one, we takeE05(R,0, . . .,0).
We found experimentally that this approximation is vali
indeed for all 0.5<a<2.0 the iterative process converged
an exact numerical solution. By using a continuation proce
we can extend our results to a large range of values ofa.

A. Ground states in two dimensions

In this section we study the properties of the ground sta
computed ford52. We used seven different values fora,
ranging from 0.1 to 10.0. For all values ofa we usedn
5100, while forL we used values that varied between 5 a
15 depending on the value ofa. In Table I, we have listed
1-2
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TABLE I. Properties of the numerically computed ground stateR for d52.

R1 R2 R
a min max L2 norm min max L2 norm L2 norm

0.1 20.063 2.349 1.495 20.357 0.357 0.489 1.573
0.2 20.018 2.284 1.999 20.281 0.281 0.493 2.059
0.5 0 2.222 2.798 20.139 0.139 0.321 2.816
1.0 0 2.206 3.421 0 0 0 3.421
2.0 0 2.222 3.957 20.139 0.139 0.455 3.983
5.0 20.018 2.284 4.471 20.281 0.281 1.102 4.605

10.0 20.063 2.351 5.670 20.357 0.357 1.855 5.966
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the minimum and maximum values and theL2 norm for both
componentsR1 andR2 of R. In Fig. 1, we show surface plots
of these functions for two values ofa, a50.1 anda55.

For a51, we obtained a maximum amplitude of 2.20
which is in agreement to three decimal places with t
known value computed in the scalar case.

For a,1, we observe that the contours ofR1 are roughly
elliptical, with the major axis of the ellipse aligned along th
x1 axis and the minor axis along thex2 axis. Asa decreases
towards zero, these contours become more elongated,
eventually assume a dipolelike structure. For all values oa
sufficiently close to one,R1 is strictly positive, however, as
a decreases it eventually develops a pair of minima at
points (0,6c) ~wherec.0 depends ona), at which it as-
sumes a negative value. The threshold value ofa for the
onset of this behavior appears to be near 0.2. ForR2 we

FIG. 1. Surface plots ofR1 ~left! and R2 ~right!; top a50.1,
bottoma55.0.
03670
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observe local maxima in the first and third quadrants, a
local minima in the second and fourth quadrants havin
magnitude that increases asa moves away from 1. Finally,
asa tends to zero we find that bothR1 andR2 became more
concentrated near the origin. A similar pattern was obser
for a.1. Finally, we note that there is a symmetry betwe
ground states corresponding to reciprocal values ofa. In-
deed, if R5(R1,R2) is a ground state corresponding to
particular value ofa, then the ground stateR8 for a21 is
given by

R8~x1 ,x2!5„R1~Aax2 ,Aax1!,2R2~Aax2 ,Aax1!….
~13!

This is of course to be expected in view of the invariance~5!.
The importance of these results lies in the relation w

the structure of blow-up solutions. Indeed, we will show n
merically in Secs. III B and IV A that, in two dimensions, th
asymptotic profile of solutions near the blow-up point~s! is
the ground state~up to scaling factors!. This extends the
results observed for the scalar NLS equation to the ve
case.

B. Ground states in three dimensions

We used five different values fora, ranging from 0.2 to
5.0. For all values ofa we usedn580, while forL we used
values that varied between 4 and 8 depending on the v
of a.

In Fig. 2 we show contour plots of the amplitude ofR for
a50.2 in both the longitudinal direction~a cross-sectiona
view in thex1-x2 plane, or equivalently in any plane contain
ing the x1 axis!, and in the transverse direction~a cross-
sectional view in thex2-x3 plane!.

FIG. 2. Contour plots of ground state amplitudeuRu for d53
anda50.2.
1-3
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TABLE II. Properties of the numerically computed ground stateR for d53.

R1 R2 R3

a min max L2 norm min max L2 norm min max L2 norm

0.2 20.004 4.536 1.568 20.370 0.370 0.329 20.370 0.370 0.329
0.5 0 4.390 2.922 20.212 0.212 0.318 20.212 0.212 0.318
1.0 0 4.338 4.345 0 0 0 0 0 0
2.0 0 4.417 5.758 20.275 0.275 0.729 20.275 0.275 0.729
5.0 20.098 4.742 6.997 20.606 0.606 2.005 20.606 0.606 2.005
s

co

on

o
ha
th
dy

:

Finally, we list in Table II the minimum and maximum
values andL2 norms of the three component functions. A
expected, the componentsR2 and R3 vanish whena51.
They increase in amplitude asa tends to 0 or to infinity.
Notice as well that the symmetry between ground states
responding to reciprocal values ofa which we observed in
the two-dimensional case does not hold in three dimensi

III. SINGLE-PEAK SOLUTIONS

In order to study the asymptotic structure of blow-up s
lutions numerically, it is necessary to use a method t
evolves dynamically so that it captures the structure of
solution near the blow-up point. One such method is
namic rescaling@12,13# ~see Ref.@3# for a review!. We define
the rescaled variables (E,j,t) by

E~j,t!5O~ t !TL~ t !E~x,t !, j5D21~ t !@x2x0~ t !#,

t5E
0

t ds

L2~s!
. ~14!

D(t) is a d-by-d matrix of the formD(t)5O(t)L(t), with
O(t) an orthogonal matrix andL(t) a diagonal matrix
whose diagonal elements arel i(t) ( i 51, . . . ,d). We takex0
to be the centroid of the 2p power ofuEu for somep>1, and
we chooseD(t) andL(t) such that
03670
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E j ij j uE~j!u2pdj

E uE~j!u2pdj

5d i j ,
d

L2~ t !
5(

i 51

d
1

l i
2~ t !

. ~15!

E, l i , x0, andO satisfy the following system of equations

i S Et1
Lt

L
E1GE1f•“ED1aDLE

1~12a!GLE1uEu2E50, ~16!

dl i

dt
52aii l i , i 51, . . . ,d, ~17!

dx0

dt
52OTLb,

dO

dt
52GO. ~18!

In Eq. ~16!, the scalar and tensor differential operatorsDL

andGL are given by

DL5L2L22:““, GL5L2L21
““L21. ~19!

Also, G5(gi j ) andA5(ai j ) ared-by-d matrices,f is a vec-
tor in Rd, with
ai j 5

pE ~d i j 2j ij j !uEu2p22Im@aE•DLĒ1~12a!E•GLĒ#dj

E uEu2pdj

, ~20!
gii 50, gi j 5
2l il j

l i
22l j

2 ai j ~ iÞ j !, f5Bj22b,

~21!

where B5(bi j ) is an d-by-d matrix, b5(b i) is a vector,
whose elements are given by
bii 5aii , bi j 5
2l j

2

l j
22l i

2 ai j ~ iÞ j !, ~22!

b i5

pE j i uEu2p22Im@aE•DLĒ1~12a!E•GLĒ#dj

E uEu2pdj

. ~23!
1-4
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Notice that the equations forE and l i decouple from the
equations forx0 andO.

The numerical domain is the cube@2L,L#d with some
sufficiently largeL, and the interval@0,L# is divided inton
equal subdivisions. The spatial differential operators are
cretized using finite differences, and a classical fourth-or
Runge-Kutta scheme is used for time integration. Spatial
tegrals are calculated using Simpson’s method.

A. Single-point blow-up in three dimensions

In this section, we consider the VNLS equation in thr
dimensions. For all of the simulations, we used parame
L510, n530, andp53, and discretized the spatial diffe
ential operators using a five-point scheme. We perform
simulations with four different values ofa, namely, a
50.5, a51.0, a52.0, anda55.0. For each of these value
we used initial conditions

E0~x1 ,x2 ,x3!56 expS 2x1
22

x2
2

l22
x3

2

m2D ~1,0,0!, ~24!

with (l,m)5(1,1), (l,m)5(1,2), and (l,m)5(1,3).
As t→t* ~or the rescaled timet goes to`), the rescaled

solutionE stabilizes to the form

E~j,t!;exp~ ivt!Ê~j!, Ê~0!5~c,0,0!, c.0,
~25!

where also the limiting frequencyv given by

v5 lim
t→`

1

uE~0,t!u2
ImFdE~0,t!

dt
•E~0,t!G , ~26!

stabilizes. The limiting value

a52 lim
t→`

Lt

vL
5 lim

t→`

L2

3vS a11

l1
2

1
a22

l2
2

1
a33

l3
2 D ~27!

is computed for each simulation and is presented in Table
Note that it is independent of the initial condition, and th
for a51 it is equal to 0.9174 . . . , in excellent agreemen
with the value obtained in the scalar case@12#.

No value is given fora50.5 and (l,m)5(1,3). This re-
flects the fact that in this case the simulation broke down
to the onset of splitting, a phenomenon in which an initia
single-humped profile divides into two separate peaks a
amplitude increases. The dynamic rescaling method in

TABLE III. Limiting value of a as a function ofa and initial
conditionE0.

(l,m)5(1,1) (l,m)5(1,2) (l,m)5(1,3)

a50.5 0.905227 0.905223
a51.0 0.917417 0.917417 0.917416
a52.0 0.899349 0.899349 0.899348
a55.0 0.851958 0.851958 0.851959
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current form was unable to calculate the limiting behavior
such solutions. They will be investigated further in Se
IV A, in the two-dimensional case, with a different metho

To determine the nature of the dependence of the blow
rate on the parametera, we ran a series of simulations for
large range of values ofa using an initial conditionE0 cor-
responding to (l,m)5(1,1), and calculateda in each case
using Eq.~27!. In Fig. 3, we plot the observed value ofa
againsta. Notice thata attains its maximum value ata51.
Referring to Eq.~14!, we rewrite Eq.~25! in terms of the
physical coordinatesx, t, andE as

E~x,t !;
1

A2a~ t* 2t !
e( i /2a)ln([ t* /t* 2t])AS x

A2a~ t* 2t !
D ,

~28!

whereA should identify with a solution of

aDA1~12a!“~“•A!1 ia~A1~x•“ !A!1uAu2A50,
~29!

with a given by the observed rate computed in Eq.~27!.
Figure 4 shows the contour plots ofuAu for a55. On the left

FIG. 3. Limiting value ofa52LLt as a function ofa.

FIG. 4. Contour plots of rescaled profileuAu for d53 and a
55.0.
1-5



l
-

pa

e
it
h

e
t

ri-

so

-
e-
b

io
y
w

To
on

lues

f
lly

,

s,

f

or
rical
ig.

JAMES COLEMAN AND CATHERINE SULEM PHYSICAL REVIEW E66, 036701 ~2002!
of the figure, we show a transverse view~a cross-sectiona
view in thex2-x3 plane!, while on the right we show a lon
gitudinal view ~a cross-sectional view in thex1-x2 or x1-x3
plane!.

B. Single-point blow-up in two dimensions

We now turn to the two-dimensional case. We used
rametersL520, n550, andp53, and we discretized the
spatial differential operators using a seven-point schem
each direction. We performed a series of simulations w
four different values ofa, namely, 0.5, 1.0, 2.0, and 5.0, wit
the initial condition

E0~x1 ,x2!54 expS 2x1
22

x2
2

m2D ~1,0!, ~30!

for m51, m52, andm53. We were able to continue th
simulations up to values oft on the order of a thousand, a
which time the amplitude of the solution in physical va
ables was greater than 1015. Our results are very similar to
those obtained for the scalar critical NLS equation. The
lution stabilizes to the form

E~j,t!5exp@ iu~t!#Ê~j,t!, Ê~0,t!5~c,0!, c.0,

~31!

where the profileÊ varies extremely slowly. The angular fre
quency of E at the origin, computed as in the thre
dimensional case, did not approach a limiting constant
rather continued to vary extremely slowly, consistent with
nearly self-similar behavior. We also compute the funct
a(t)52Lt /vL. As expected,a(t) was observed to deca
extremely slowly to zero. In analogy with the scalar case,
assume a decay rate of the form

a~t!;
l

ln t13 ln lnt
, ~32!

with l depending ona. The function l(t)5a(t)(ln t
13 ln lnt) converges extremely slowly to some value.
make this more precise, we fit this curve to the functi
lapprox(t)5A1B/t1C/t2, where the parametersA, B, and
C are chosen to minimize

x5A1

n (
i 51

n

@lapprox~t i !2l~t i !#
2,

TABLE IV. Limiting value of l(t) for various values ofa.

tmax A B C x

a50.5 4000 3.28 3.903102 23.073105 8.431027

a51.0 2000 3.19 1.023102 22.863104 3.731027

a52.0 1000 3.13 4.113101 24.863103 3.431027

a55.0 400 2.97 8.683101 29.533103 2.731026
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with t i a sequence ofn values that tend totmax. The form of
the function was chosen because it gave reasonable va
for the parametersA, B, andC, and was relatively insensitive
to the value oftmax. Results for different values ofa are
shown in Table IV. Fora51 we compute a limiting value o
A53.19, which is in good agreement with the theoretica
predicted valueA5p. The error termx was quite small
relative to the valuea50.24 at the end of the simulation
indicating thatlapprox(t) is a close fit tol(t).

We now turn to the study of the limiting profileE. Using
Eq. ~14! to convert from rescaled to physical coordinate
and eliminatingv by rescaling, we find that

E~x,t !;
1

L~ t !
exp@ iu„t~ t !…#AS x

L~ t !
,t D , ~33!

where

A~j,t!5
1

Av~t!
ÊS j1

g1Av~t!
,

j2

g2Av~t!
,t D , ~34!

and the stretching factorsg1 andg2 are given by

g15 lim
t→`

l1~t!

L~t!
, g25 lim

t→`

l2~t!

L~t!
. ~35!

As expected, the limiting values ofg1 andg2 were indepen-
dent ofE0; they are listed in Table V for different values o
a. By analogy with the scalar case, we expectA to coincide
with the ground stateR corresponding to the value ofa used
in the simulation. We list in Table V theL2 andL` norms of
A andR, which agree to within a few percent. The data f
the ground states have been computed from the nume
results obtained in Sec. II A. As an example, we plot in F
5 the level curves ofuAu and uRu for a50.5.

TABLE V. Comparison ofL2 and L` norms of A and R for
various values ofa.

R A
a g1 g2 L2 norm L` norm L2 norm L` norm

0.5 1.211 0.871 2.82 2.22 2.85 2.19
1.0 1.000 1.000 3.42 2.21 3.45 2.18
2.0 0.871 1.211 3.98 2.22 4.04 2.19
5.0 0.799 1.518 4.60 2.28 4.73 2.21

FIG. 5. Contour plots ofuAu ~left! and uRu ~right! for d52 and
a50.5.
1-6
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IV. TWO-POINT BLOW-UP FOR THE VNLS EQUATION

When performing simulations for values ofa small com-
pared to one, we encounter the phenomenon of splitting
which a solution with an initially single-peaked profile d
vides into two separate peaks as its amplitude increases
capture the dynamics, we use a numerical method that
structs a curvilinear mesh that adapts dynamically to
function as it evolves, by concentrating mesh points n
regions of high amplitude. It is a structured mesh genera
algorithm, and consists of constructing a time-depend
transformation that acts on the spatial domainD and maps
the physical solutionE to a logical solutionE. The number of
nodes is fixed and their locations change as the solu
evolves. The resulting mesh is nonuniform and, in particu
the mesh lines do not intersect orthogonally. A detailed
scription of the mesh refinement method can be found in R
@8#. In Appendix A, we briefly recall the main ideas.

A. The caseaÄ0.1

We apply mesh refinement technique to the cubic VN
equation in two dimensions, where splitting of the profile h
been observed for small values of the parametera. We in-
troduce logical variablesE5(E1 ,E2) andj5(j1 ,j2) and re-
write Eq. ~2! in terms of the new variables and the coef
cients ai j

kl and bi j
k listed in Appendix B to obtain the

evolution equations

dE1

dt
5 i ~c1

11]11E11c1
12]12E11c1

22]22E11c1
1]1E1

1c1
2]2E11d1

11]11E21d1
12]12E21d1

22]22E2

1d1
1]1E21d1

2]2E21uEu2E1!, ~36!

dE2

dt
5 i ~c2

11]11E21c2
12]12E21c2

22]22E21c2
1]1E2

1c2
2]2E21d2

11]11E11d2
12]12E11d2

22]22E1

1d2
1]1E11d2

2]2E11uEu2E2!, ~37!

where

c1
i j 5a11

i j 1aa22
i j , c1

i 5a11
i 1aa22

i ,

c2
i j 5a22

i j 1aa11
i j , c2

i 5a22
i 1aa11

i , ~38!

d1
i j 5d2

i j 52~12a!a12
i j , d1

i 5d2
i 52~12a!a12

i .

The mesh refinement equations forx1 , x2, andE are iden-
tical to those in the scalar case@see Eqs.~A6!–~A8!# with w
replaced byE.

We begin by running a simulation witha50.1 and the
initial condition

E0~x1 ,x2!54 exp~2x1
22x2

2!~1,0!. ~39!
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We use the parametersL56, n15n25120, andM53. For
the weight functional we found that it was necessary to
clude higher derivative terms in order to keep the logi
function E well behaved, and so we took

w~E!5S@~11uEu610.1u““Eu2!1/6#, ~40!

with smoothing parameters@see Eq.~A13!# s15s2512. The
incorporation of terms containing second derivatives of
function is particularly important for simulations in whic
the structure of the solution has a complex form.

The blow-up begins as in the scalar case, but after a s
time the peak becomes elongated and two subpeaks form
either side of the main peak. These subpeaks gradually
crease in magnitude, while the main peak diminishes. Ev
tually, E forms two distinct peaks at the points (0,6c) with
c'0.3473, superimposed on a small shoulder compon
that surrounds the peaks and attains its maximum at the
gin. The amplitude then increases extremely rapidly as a
tion of the mass concentrates near each peak, while the
maining portion dissipates into the shoulder component.
were able to continue the simulation up to a rescaled t

FIG. 6. Mesh plots for two-point blow-up of VNLS equatio
with a50.1 at end of simulation.
1-7
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FIG. 7. Two-point blow-up solution of VNLS equation witha
50.1 at the end of the simulation;~a! uEu along j2 axis ~logical
coordinates!; ~b! uEu along thex2 axis ~physical coordinates!.
03670
t573.1. At the end of the simulation the amplitude was a
proximately 8.23103, while the physical time was approxi
matelyt50.358 206. The mesh points at the end of the sim
lation are plotted in Fig. 6. Profiles of the amplitude alo
the x2 axis at the end of the simulation in both physical a
logical variables are given in Fig. 7. In Fig. 8 we show t
evolution of the amplitude, gradient, and divergence a
function of the rescaled timet. We are also interested in
studying the behavior of the profile of the solution near ea
peak close to the blow-up time. In Fig. 9~left! we show a
contour plot ofuEu near one of the peaks at the end of t
simulation, while at the right we show a contour plot of th
amplitudeuRu of the ground state corresponding toa50.1
~as computed in Sec. II A!. These plots are seen to be ide
tical up to a uniform spatial dilation.

B. The limiting case: aÄ0

Since the splitting phenomenon for the VNLS equati
appears to be correlated with small values ofa, we next
investigated the behavior in the limiting casea50. The
equation witha50 ~but including an additional cubic non
linear term! also arises in modeling the dynamics of a sma
amplitude Alfvén wave propagating in a plasma permeat
by an ambiant magnetic field@14# ~see also Ref.@15#!.

In our calculations, we used the parametersL56, n1

5n25120, toleranceM53, and the weight functional

w~E!5S@~11u““Eu2!1/6#, ~41!

FIG. 9. Asymptotic form of two-point blow-up solution of th
VNLS equation witha50.1.
FIG. 8. Evolution of~a! uEuL`, ~b! u¹EuL2
2 , and~c! u¹•EuL2

2 , as a function oft for the VNLS equation witha50.1.
1-8
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FIG. 10. Evolution of~a! uEuL`, ~b! u¹EuL2
2 , and~c! u¹•EuL2

2 , as a function oft, for the VNLS equation witha50.
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with smoothing parameterss15s256. The dynamics of the
blow-up are different than those fora50.1. The amplitude
begins to increase, and then almost immediately the pro
splits into two peaks. Each of these peaks increases in
plitude very slowly, while the gradient increases much m
rapidly. Eventually, two very sharp peaks with small amp
tude are formed, as well as a number of cusps. The blow
is characterized by a gradient very large relative to the a
plitude of the solution. The time step refinement proced
causes the time-step to decrease rapidly, and it become
practical to continue the simulation beyond this point.

In Fig. 10 we plot the evolution of the amplitude, grad
ent, and divergence as a function of the rescaled timet.
Notice that although the gradient continues to increase a

FIG. 11. Profiles of the solution of VNLS equation witha50
along thex2 axis.
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the case wherea50.1, the divergence actually decreases a
appears to approach a limiting value. The amplitude
creases extremely slowly and it is unclear whether or no
eventually saturates. In Fig. 11 we show profiles of the fu
tion along thex2 axis at two points in the computation. O
the left we showE in physical coordinates, while on the righ
we show the logical functionE. Notice thatE remains fairly
smooth even afterE has become strongly peaked, althou
the resolution of the cusps was less effective than that of
peaks. Nonetheless, the accurate conservation of the en
~the maximum relative error was about 331024) suggests
that the simulation is accurate.

V. TIME DISPERSION NLS EQUATION

In this section, we apply the dynamic mesh refinem
algorithm to study the problem of the time dispersion NL
equation~TDNLS!

iuz1uxx1uyy2e2utt1uuu2u50, ~42!

which describes the motion of an ultrashort wave train em
ted by a laser as it passes through a nonlinear medium.

We will restrict our study to radially symmetric solution
in the transverse plane. The dynamics of this problem h
been studied by several authors both analytically@16,17#,
and numerically@3,18#. Numerical simulations show that th
transverse focusing leads to splitting of the original pulse
the t direction, although further conclusions about the d
namics could not be established. Using an adaptive m
refinement scheme, Germaschewskiet al. @19# observed that,
after the first spitting, each peak may undergo in some ca
sequential divisions near the outer edge of the pulse.
calculations seem to confirm these observations as we
new computations by Fibichet al. @6#. Transforming from
physical coordinates (u,r ,t) to logical coordinates (w,r,t),
Eq. ~42! is rewritten in its radial form
1-9
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wz5 i S 1

r ~r,t!
(c1]r1c2]t)@c1r ~r,t!]rw

1c2r ~r,t!]tw#2e2~a22
11]rrw12a22

12]rtw

1a22
22]ttw1b22

1 ]rw1b22
2 ]tw!1uwu2w D , ~43!

where

c15
1

J

]t

]t
, c252

1

J

]t

]r
, J5

]r

]r

]t

]t
2

]r

]t

]t

]r
, ~44!

andai j
kl andbi j

k are the coefficients given in Appendix A wit
x1 ,x2 ,j1, andj2 replaced byr ,t,r, andt, respectively.

We first considered the problem corresponding toe51
with isotropic initial condition

u0~r ,t !56 exp~2r 22t2!, ~45!

as studied in Sec. 9.2 of Ref.@3#. For our parameters we tak
L56,n15160,n25200,M53, and we use the weight func
tional

w~u!5S@~11u¹¹uu2!1/6#, ~46!

with smoothing parameterss1516 ands2520.
The dynamics of this problem are more complicated th

those of previous simulations. As in the case of the VN
equation with smalla we observe splitting, but the onset o
splitting is much more delayed. The solution begins to
velop with a profile consisting of a single peak, whic
reaches an amplitude of about 150. This peak is extrem

FIG. 12. Profiles of the solution of TDNLS equation alongt axis
for e51 andu056 exp(2r22t2).
03670
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elongated in thet direction; indeed at this point the contou
of uuu are about 50 times as long in thet direction as in ther
direction. Only at this point does splitting begin to occur, a
two distinct peaks eventually form. Both of these peaks
also extremely elongated in thet direction. In addition to the
main peaks, there are a series of local undulations in
cross-sectional profiles of the amplitude parallel to thet axis.
These undulations gradually become more and more com
cated, until finally a second splitting of the main peaks b
gins to occur. By this point the amplitude has saturated, a
attaining a maximum of about 103, and begins to decreas
gradually.

FIG. 13. Evolution of amplitude and square of the gradient
the L2 norm for TDNLS equation fore51 and u056 exp(2r2

2t2) as a function ofz.

FIG. 14. Profile ofuuu along t axis for TDNLS equation fore
5

1
4 andu053.5 exp(2r22t2).
1-10



s.
ol

o
th
io

m
h
n

he
ke

t
he
o
in
ip
p
o
te

s
an

n

-
s
he

o

i
d

ria

nge

s

olu-

is
l
to
ities

e of
nal
des
rent
s
id

ur
on

de
n
he

as
e

d to
des
ode

de
ce
an-

der
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In Fig. 12 we show profiles of the solution along thet axis
for two values ofz in both physical and logical coordinate
As can be seen, the mesh transformation is able to res
the extremely high gradients associated with the shocks
either side of the main peaks. We also show in Fig. 13
evolution of various quantities associated with the solut
as a function of the rescaled distancez defined by z
5*0

zuu(z8)uL`
2 dz8, and analogous to the rescaled timet con-

sidered earlier.
Next, we consider the problem corresponding toe50.25

with initial conditionu0(r ,t)53.5 exp(2r22t2), which, up to
rescaling, is identical to that studied in Ref.@18#. We use
parametersL56,n15120,n25240,M52.5, and the same
weight functional as before withs1512 ands2524. In Fig.
14 we show a series of profiles ofuuu for various values ofz.
As with the first simulation, the dynamics of this proble
appear to be quite complicated. The blow-up begins wit
Gaussian-like profile, which quickly becomes highly elo
gated in thet direction. In the regionr .0, a splitting begins
to form, which gradually penetrates the peak until it reac
the t axis. The amplitude then increases in a two-pea
profile, while further subdivision occurs away from thet
axis. The rate of blow-up decreases until a saturation poin
reached at an amplitude of about 143. The amplitude t
begins to decrease and further subdivision of the peaks
curs, until eventually two shocks form outside the ma
peaks. As the amplitude continues to decrease, mult
shocks form and the dynamics become extremely com
cated. At this point, however, the simulation is at the limit
its validity, and due caution should be exercised when in
preting these results.
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APPENDIX A: A DYNAMIC MESH
REFINEMENT TECHNIQUE

Suppose thatu:D5@2L,L#2→C, andu vanishes on]D.
We define logical coordinatesj5(j1 ,j2) on D, and mapD
onto itself by a smooth invertible transformatio
(j1 ,j2)↔(x1 ,x2) and the logical functionw:D→C by
w(j)5u„x1(j1 ,j2),x2(j1 ,j2)…. The problem is how to con
struct the transformation so thatw is as well behaved a
possible. A comprehensive overview of various approac
can be found in Refs.@20,21#. All these methods have in
common the concept of a weight functionalw, whose value
provides some indication of the relative concentration
mesh points necessary in a region in order to modelu accu-
rately. For example, a simple choice for a weight function
w511uuu2. An important class of algorithms is compose
of those which define the transformation in terms of a va
tional problem~see Ref.@22# or Chap. 6 of Ref.@20#!. One of
the most useful, first proposed by Winslow@23# in the con-
text of an adaptive finite element algorithm, is given by
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I W~j!5E
D

1

w2~x!
(
i , j

S ]j i

]xj
D 2

dx. ~A1!

One seeks functionsj1(x1 ,x2) andj2(x1 ,x2) that minimize
I W subject to the constraintsj i(x1 ,x2)5xi , i 51,2 on ]D.
For this purpose, one writes the associated Euler-Lagra
equations (i 51,2),

Li~j1 ,j2![
]

]x1
S 1

w2~x!

]j i

]x1
D 1

]

]x2
S 1

w2~x!

]j i

]x2
D 50.

~A2!

The system~A2! has the form of a pair of elliptic equation
for j1(x1 ,x2) andj2(x1 ,x2). A straightforward way to solve
this system numerically is to consider the associated ev
tion equationsdj i /ds5Li(j1 ,j2) for which the solution to
Eq. ~A2! is a fixed point. To test the effectiveness of th
method, Ren and Wang@5# performed a series of numerica
simulations and also use the Winslow algorithm iteratively
integrate time-dependent equations that develop singular
in finite time.

Here, we develop an approach that incorporates som
the above ideas. Rather than proceeding from a variatio
approach, we picture the mesh as a grid of weighted no
connected by springs, a concept also discussed in a diffe
context in Ref.@24#. A detailed description of the method i
given in Ref.@8#. Let the mesh consist of a rectangular gr
of nodes Ni , j situated at physical positionsxi , j
5„(x1) i , j ,(x2) i , j… in which each node is connected to its fo
closest neighbors by a spring. Each spring exerts a force
the two nodes at its end points, which is given in magnitu
by the spring tensionk multiplied by the distance betwee
the nodes, and directed along the line of the spring. T
constantk is different for each spring, and is determined
follows. Each nodeNi , j has associated with it a positiv
weight wi , j5w(xi j ) wherew is a weight function. The ten-
sion constant associated with each spring is then define
be the arithmetic average of the weights of the two no
that it connects. For example, the spring connecting n
Ni , j to nodeNi 11,j exerts a force

F5
1

2
~wi , j1wi 11,j !~xi 11,j2xi , j ! ~A3!

on nodeNi , j , and an equal and opposite force on no
Ni 11,j . If the mesh is to be in equilibrium, then the net for
on each node from the four springs attached to it must v
ish; in other words, we must have

~wi , j1wi 11,j !~xi 11,j2xi , j !1~wi , j1wi 21,j !~xi 21,j2xi , j !

1~wi , j1wi , j 11!~xi , j 112xi , j !

1~wi , j1wi , j 21!~xi , j 212xi , j !50. ~A4!

Now expand all of the quantities above in a second-or
Taylor expansion about the nodeNi , j . Equating coefficients
of h2, and separating intox1 andx2 components, we get the
pair of equations (i 51,2)
1-11
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Li~x1 ,x2![
]2xi

]j1
2 1

]2xi

]j2
2 1

2

w S ]w

]j1

]xi

]j1
1

]w

]j2

]xi

]j2
D50.

~A5!

To solve Eq.~A5!, we consider the evolution equations f
x1 , x2, andw in the form

dxi

ds
5Li~x1 ,x2!, ~A6!

dw

ds
5X1

]w

]j1
1X2

]w

]j2
, ~A7!

where

X15
1

J S ]x2

]j2

dx1

ds
2

]x2

]j1

dx2

ds D ,

X25
1

J S ]x1

]j1

dx2

ds
2

]x1

]j2

dx1

ds D , ~A8!

and J is the Jacobian of the mapping (j1 ,j2)→(x1 ,x2).
These equations are similar to the moving-mesh equat
developed in Refs.@25,26#. Also, it follows from Eq.~A8!
that

dxi

ds
5X1

]xi

]j1
1X2

]xi

]j2
. ~A9!

Equations~A7! and ~A9! constitute a set of three first-orde
equations forx1 ,x2, and w, and clearly all have the sam
characteristic curves inD3@0,̀ #.

To visualize the method, we consider an example of m
generation. LetD5@26,6#2 with a 2n-by-2n grid (n
5120), and the test function be given byu(x1 ,x2)
54 exp(2x1

22x2
2/4). We construct a transformation, that i

duces physical coordinate functionsxi(j1 ,j2) on D. Each of
the regularly spaced mesh pointsj i , j is mapped to a new
mesh pointxi , j , and this new set of mesh points defines
curvilinear mesh onD which is adapted to the functionu, as
in Fig. 15.

We now extend the static mesh generation scheme
method suitable for solving dynamical equations. One

FIG. 15. Curvilinear mesh induced byu.
03670
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proach is to incorporate the time evolution directly into t
mesh evolution equations. Such methods are known as m
ing mesh methods and are discussed in detail in Refs.@25–
27#. A second approach, taken in this work, is to decou
the time-dependent problem into two steps, one in which
mesh is fixed and the solution evolves in time, and the s
ond in which time is held fixed and a static mesh generat
scheme is applied to the current value of the solution.

Let us illustrate it on a model problem, the critical NL
equation in two dimensions,

du

dt
5 i S ]2u

]x1
21

]2u

]x2
2 1uuu2uD , ~A10!

with initial condition u(x,0)5u0(x)54 exp(2uxu2). At t
50, we initialize the mesh transformation to the identity, a
w5u0. The method consists of alternating between evolut
and mesh generation phases. During the evolution phase
xi(j1 ,j2) are held constant, andu is allowed to evolve in
time. The evolution equations are determined by rewrit
the spatial derivatives appearing in Eq.~A10! in terms ofj1
andj2:

]2u

]xi]xj
5(

k,l
ai j

kl ]2w

]jk]j l
1bi j

k ]w

]jk
. ~A11!

The coefficientsai j
kl and bi j

k are calculated in Appendix B
Substituting Eq.~A11! into Eq. ~A10! we obtain the evolu-
tion equation

dw

dt
5 i @~a11

111a22
11!]11w12~a11

121a22
12!]12w1~a11

221a22
22!]22w

1~b11
1 1b22

1 !]1w1~b11
2 1b22

2 !]2w1uwu2w#, ~A12!

for w, where] i denotes derivative with respect toj i . Since
the mesh is fixed during this phase,x1 and x2 remain con-
stant, as do the coefficientsai j

kl andbi j
k . Now we calculateX1

andX2 from ~A6!–~A8! and compare their vector norm wit
some fixed toleranceM.0. If u(X1 ,X2)uL`.M we perform
a mesh refinement step, while ifu(X1 ,X2)uL`,M we per-
form an evolution step. We then computeX1 and X2 again
and repeat the procedure. Since each mesh refinement
tends to decreaseu(X1 ,X2)uL` and each evolution step tend
to increase it, we soon reach an equilibrium state in wh
u(X1 ,X2)uL` hovers very close toM and mesh refinement an
evolution steps alternate rapidly with one another.

In all cases, we discretized the spatial differential ope
tors using a seven-point scheme in each direction, while
temporal discretization was performed using a variable ti
step fifth-order Runge-Kutta-Fehlberg scheme with an e
bedded fourth-order error estimate.

We use parametersL56, n15n25120, and tolerance
M52. We first define a smoothing operatorS. Let f 5 f i j ,
2n1< i<n1 ,2n2< j <n2 be any function defined on th
logical mesh, andS( f ) defined by

„S~ f !…i , j5 (
uku<s1 ,u l u<s2

ckdl f i 1k, j 1 l , ~A13!
1-12
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wheres1 ands2 are non-negative integers andck anddl are
weights given by a binomial distribution,

ck5
1

22s1

~2s1!!

~s12k!! ~s11k!!
, dl5

1

22s2

~2s2!!

~s22 l !! ~s21 l !!
.

~A14!

The formula in Eq. ~A13! is valid for 2n11s1< i<n1
2s1 , 2n21s2< j <n22s2. For points near the boundary,
is modified by extrapolatingf to fictitious points outside the
integration region. The parameterss1 ands2 control the de-
gree of smoothing; fors15s250 the operatorS is simply the
identity. In effect,S performs a convolution off with a dis-
crete approximation of a Gaussian centered at the origin.
used this smoothing operator in all of our simulations, a
found that it greatly increased the smoothness of the m
near the singularities, which resulted in improved stabi
and accuracy.

We now consider the problem of choosing an appropr
weight function. We will consider weight functions that d
pend only on the value ofu and its first- and second-orde
partial derivatives. Notice that these derivatives are co
puted relative to the physical variablex and not the logical
variablej. In order that the volume under the surface of t
function be equidistributed with respect to the new coor
nate system, it is desirable to have a mesh spacing th
roughly proportional to the value ofuuu21. For example, one
can choosew(u)5(11uuu2)1/2. To extend this result to
weight functionals that include higher-order derivative term
we note that for a self-similar blow-up solutionuu(t)uL`

;L21(t), u] iu(t)uL`;L22(t), u] i j u(t)uL`;L23(t). In order
to have a weight function in which all terms remain of equ
order asL(t)→0, we definew as (c1 ,c2>0)

w~u!5S@~11uuu61c1u] iuu31c2u] i j uu2!1/6#, ~A15!

This is the form ofw that will be used for all of our simula
tions. In the case of single-point blow-up for the scalar N

FIG. 16. Single-point blow-up solution of NLS equation: su
face plot ofu.
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equation, the solutionu has a relatively simple structure, s
for this simulation we tookc15c250 with smoothing pa-
rameterss15s256.

We were able to perform the integration up tot5177.3,
where we recall that the rescaled timet is defined byt
5*0

t uu(s)uL`
2 ds. This corresponds to a physical timet

50.145 443. At the end of the simulation, the amplitude w
approximately 3.03107 and the time stepdt was approxi-
mately 7.0310217. The mesh spacing at the origin was abo
1028, an increase in resolution of about 53106 over the
initial grid.

In Fig. 16 we show surface plots of the solution in phy
cal coordinates, while in Fig. 17 we show plots of a blow-
view near the origin.

APPENDIX B: COEFFICIENTS FOR PARTIAL
DERIVATIVES IN CURVILINEAR COORDINATES

The coefficientsai j
kl andbi j

k associated with the formula

]2u

]xi]xj
5ai j

kl ]2w

]jk]j l
1bi j

k ]w

]jk
, ~B1!

wherex15x1(j1 ,j2), andx25x2(j1 ,j2), are curvilinear co-
ordinates given by
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FIG. 17. Closeup view of mesh near the blow-up point.
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