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Numerical simulation of blow-up solutions of the vector nonlinear Schralinger equation
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We present numerical simulations of blow-up solutions of the vector nonlinear @obes equation, which
arises as the subsonic limit of the vectorial Zakharov system in plasma physics. In the course of our calcula-
tions, we observed the phenomenon of splitting of the solution profile. To capture the structure of the solution,
we developed a new dynamic mesh refinement method based on the iterative grid distribution method intro-
duced by Ren and Warlg. Comput. Phys159 246 (2000]. We also applied this method to study the time
dispersion nonlinear Schdinger equation that describes the propagation of ultrashort pulses in a dispersive

medium.
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I. INTRODUCTION is the Hamiltonian.
In the special case=1, it yields a blow-up result for
The Zakharov system initial conditions with a negative Hamiltonidd]. However,
) for a#1 the modified variance no longer has a fixed sign
IHE—aVX(VXE)+V(V-E)=nE, and existence of blow-up solutions is not proved. We thus
B ) investigated this question numerically, by performing a series
dun—An=A[E| @) of simulations with various values af. It is worth noticing

Or‘hat in two dimensions, there is a symmetry between solu-
tions corresponding to reciprocal values of. If E
=(E1(Xq1,%2,1),Ex(X1,X,,t)) is a solution to Eq(2) corre-

governs the coupled dynamics of the complex envelope
the electric-field oscillations and the low-frequency fluctua-
tions of the iond1] in a quasineutral plasma. In the “sub- dina 1 then the functi
sonic limit,” where the density fluctuations are assumed tooPONding o some, then the function

follow adiabatically the modulation of the amplitude, the _, _ B

Zakharov system reduces to the vector nonlinear Sthger E'(xq. %, 1) = (Ba(Vaxg, ey 1), = Bpl(Vaxg, axy 1)

(VNLS) equation 6)

idE—aV X (VXE)+V(V-E)+|E[’E=0. (2)  is a solution corresponding t@ .
) i , . In view of characterizing the limiting profiles of the
The dimensionless parameterin Eq. (1) is given by« pjow.up solutions, we started in Sec. Il by computing the

— 23,2 : ; ; i . o .
=C"/3v, wherecis the velocity of light andbe is the mean  ground statetbound state solution of minimal actipof the
electron thermal velocity. Since contains a factor o€ in  corresponding problem

the numerator, it is quite large in typical situations. Indeed,
its value ranges from about 20 for laboratory plasmas to aAR+(1—a)V(V-R)—R+|R|?R=0. (6)
about 2x 10° for interstellar ga$2].

We are interested in this paper in collapsing solutions. Th&Ve numerically constructed ground states in two and three
usual approach to the problem of proving blow-up for thedimensions for a range of values @f We then performed a
nonlinear Schrdinger equation and related systems is toseries of simulations of the VNLS equation with various val-
analyze the time evolution of the varianc&/(t) ues ofa. In dimension 2, for values af close or equal to 1,
= [x|2|E|?dx. In the vector case, a general variance identitywe observed that the blow-up properties of the solution are
can be establishel®], similar to those of solutions of the critical scalar NLS equa-

tion. We also observed that the asymptotic profile of the so-

2 t — lution near the point of blow-up resembles the ground state
@ V(t)+2(1_a)fof x; Im[E;d;E;] R up to rescaling(Sec. Ill). The calculations were well
handled by the method of dynamic rescalifg]. In the
d-2 4 course of these simulations, for valuescomall compared
:46“(2"'_7] || ) (3 to one, we encountered the phenomenon of splitting, in

which a solution with an initially single-peaked profile
where divides into two separate peaks as its amplitude increases.To
overcome this difficulty, we implemented in Sec. IV a modi-
fied version of the iterative grid distribution method intro-
duced in Ref[5]. Our method avoids the iterative procedure.
It consists of picturing the mesh as a grid of weighted nodes
connected by springs. Each spring exerts a force on the two
*Electronic address: coleman@math.toronto.edu nodes at its end points, which is given in magnitude in terms
TElectronic address: sulem@math.toronto.edu on the spring tensiok and the distance between the nodes.

H=f (a| VE()]*+(1-a)|V-E(D]*= Z [E(D]Y) @)
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Each node has a positive weight associated with it. The ten-
sion constant associated with each spring is defined as the E(0)=(\,0,...,0, j x|E(x)|?dx=0, (10
arithmetic average of the weights of the two nodes that it

connects. This leads to the construction of a curvilinear mesiwvhere\ >0. The first equation specifies the choicedofind

that adapts dynamically to the function as it evolves by conQ, while the second specifies the choicexoby requiring
centrating mesh points near regions of high amplitude. Irthat the center of mass & be located at the origin. Note
Sec. V we apply this method to the VNLS equation in situ-that Eq. (10) implicitly assumes that bound states do not
ations where splitting occurs. For small valuesagfwe ob-  vanish at their center of mass. All of the bound states that we
serve that blow-up occurs at two points, and that the profile&onstruct satisfy this property.

near these points is well-described by the ground state up to We now describe the method in detail. Fixiag>0, we
rescaling. We also consider the limiting case0 in which  |ook for a solutionE to F(E) =0, where

blow-up appears to take a different form. In this case, the

gradient norm|VE| > blows up, but the divergence norm F(E)=aAE+(1-a)V(V-E)-E+|E[’E, (10
|V-E| 2 remains bounded, while the amplitude increases , . - . .
very slowly and possibly saturates. In Sec. VI, we finally Which satisfies Eq(10). We construct this function through
apply our method to the time dispersion NLS equation assothe method of quaS|I|near|zat_|on, by defining a series of ap-
ciated with the propagation of ultrashort pulses passinq’rox'.mantSEO'El*EZ' . - -, which converge to a solutioB.
through a nonlinear medium. Previous computati@$ave || Ek iS One such approximant and we sgtE—E,, then to
suggested that the normal time dispersion term can caudg@ding order, satisfiesl. (&) =F(E), where

multisplitting and a saturation of the amplitude. We confirm _ 2

these observations and compute the profiles of the solution. Li(e)=adet(1-a)V(V-e)—e+3[El% (12

This motivates the following iterative method. We begin by

Il. NUMERICAL SIMULATION OF STANDING-WAVE choosing some initial estimatg,, and we then define a se-
SOLUTIONS quence of functions recursively by, =E,_,;+¢._; for k

We are interested in solutions of the VNLS equation in the” 1, wheree!(,l is determined from E¢(12). We |te_rate this
form of standing-wave solutions process until for somk we have|g|, =< €, wheree is some

fixed tolerance. At this poirE, has essentially converged to

E(x,t)=exp(it)R(X), (7y  afixed point, which we take to be the desired solution
The linearized differential equatidn(e,) =F(Ey) is dis-
whereR solves cretized using a finite difference method. We work on the
domainD=[—L,L]9CRY whereL is chosen to be suffi-
aAR+(1-a)V(V-R)—R+|R[’R=0. (8)  ciently large, and use as approximate boundary conditions

) ) o thatE=0o0ondD. The differential operators are approximated
Existence of a solution of Eq8) as a minimizer for some py 5 seven-point scheme in each directiancurate to sixth
functional is shown in Refl7] (see Rgf.[s] for a detailed  order inh=L/n, wheren is the number of points in each
proof) using methods of concentration compactness. Thgjirection), and at the boundary are calculated by extrapolat-
problem of uniquenes&up to the family of gauge transfor- jng to fictitious points outsided where e, is assumed to
mations under which this equation is invaripappears to be yanish identically. The resulting linear system has the form
quite difficult and at present it is still an open question. Theax—p wherex and b are vectors withN=(2n—1)¢ ele-
bound state equatioi®) is a nonlinear, vector-valued elliptic ments, andA is a sparse positive matrix with2 elements.
boundary value problem. For the corresponding scalar probrpis system is solved by the conjugate-gradient method.
lem with «=1, one knows that solutions are radially sym-  \ve now consider the problem of choosing an initial esti-
metric[9]. The equation then reduces to mateE,. For a=1, the ground state that satisfies EtQ) is

given by R=(R,0,...,0),whereR is the ground state for
R'+— R —R+R3=0, R'(0)=0, R(x)=0.(9) the scalar NLS equation. To firifl, for «#1, we make the
r assumption thaR varies continuously as a function eof.

) ) _ Hence, for values close to one, we takg=(R,0,...,0).
This problem can be solved numerically by a shootingwe found experimentally that this approximation is valid,
method, as done, for example, in Refd0,11] in a more  jhgeed for all 0.5 a<2.0 the iterative process converged to

general context. an exact numerical solution. By using a continuation process,

For the vecto.r case, since soldutlons are no longer r-adlqk,e can extend our results to a large range of values.of
one must work in the full spacB® (or at least in a suffi-

ciently larged-dimensional box The method that we de-
scribe here is based on an iterative procedure that begins
with an initial guess and converges rapidly to an exact solu- In this section we study the properties of the ground states
tion. Equation(6) is invariant under phase shifts, rotations, computed ford=2. We used seven different values for

and translations. The three degrees of freedom associat¢anging from 0.1 to 10.0. For all values of we usedn

with these invariances can be eliminated if we specify that=100, while forL we used values that varied between 5 and
solutions to Eq(6) must satisfy the normalization conditions 15 depending on the value of. In Table |, we have listed

A. Ground states in two dimensions
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TABLE |. Properties of the numerically computed ground sRtéor d=2.

R, R, R

a min max L2 norm min max L2 norm L2 norm
0.1 —0.063 2.349 1.495 —0.357 0.357 0.489 1.573
0.2 —-0.018 2.284 1.999 —-0.281 0.281 0.493 2.059
0.5 0 2.222 2.798 —0.139 0.139 0.321 2.816
1.0 0 2.206 3.421 0 0 0 3.421
2.0 0 2.222 3.957 —-0.139 0.139 0.455 3.983
5.0 —0.018 2.284 4471 —0.281 0.281 1.102 4.605
10.0 —0.063 2.351 5.670 —-0.357 0.357 1.855 5.966

the minimum and maximum values and tb&norm for both  observe local maxima in the first and third quadrants, and
component®R; andR, of R. In Fig. 1, we show surface plots local minima in the second and fourth quadrants having a
of these functions for two values af, «=0.1 anda=5. magnitude that increases asmoves away from 1. Finally,
For =1, we obtained a maximum amplitude of 2.206, as« tends to zero we find that bof, andR, became more
which is in agreement to three decimal places with theconcentrated near the origin. A similar pattern was observed
known value computed in the scalar case. for «>1. Finally, we note that there is a symmetry between
For <1, we observe that the contours®f are roughly  ground states corresponding to reciprocal valuesroin-
elliptical, with the major axis of the ellipse aligned along the deed, ifR=(R;,R,) is a ground state corresponding to a

X, axis and the minor axis along tixg axis. Asa decreases particular value ofa, then the ground statR’ for o~ is
towards zero, these contours become more elongated, agd/en by

eventually assume a dipolelike structure. For all valuea of

sufficiently close to oneR; is strictly positive, however, as R’(X1,%2) = (Ry(Vaxy, Vaxy), — Ro(Vaxa, Vaxy)).

a decreases it eventually develops a pair of minima at the (13

points (0:xc) (wherec>0 depends o), at which it as-  Thjg js of course to be expected in view of the invariat®e
sumes a negative value. The threshold valuexofor the The importance of these results lies in the relation with
onset of this behavior appears to be near 0.2. Rpwe  he structure of blow-up solutions. Indeed, we will show nu-
merically in Secs. 11l B and IV A that, in two dimensions, the
asymptotic profile of solutions near the blow-up péshtis

the ground statdup to scaling factops This extends the
results observed for the scalar NLS equation to the vector
case.

B. Ground states in three dimensions

We used five different values far, ranging from 0.2 to
5.0. For all values ofr we usedn=80, while forL we used
values that varied between 4 and 8 depending on the value
of a.

In Fig. 2 we show contour plots of the amplitudeRfor
a=0.2 in both the longitudinal directiofa cross-sectional
view in thex,-x, plane, or equivalently in any plane contain-
ing the x; axig), and in the transverse directida cross-
sectional view in thex,-x3 plane.

() T2

0.6 0.6

-0.6 -0.6
-177-06 -02 02 06 T1 -1 -06 -02 02 06 T
FIG. 1. Surface plots oR; (left) and R, (right); top «=0.1, FIG. 2. Contour plots of ground state amplitud® for d=3
bottom «=5.0. anda=0.2.
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TABLE Il. Properties of the numerically computed ground statéor d=3.

Ry R Rs
a min max  L? norm min max L? norm min max L? norm

0.2 —0.004 4536 1568 -0.370 0.370 0329 -0.370 0.370 0.329

0.5 0 4.390 2922 -0.212 0.212 0.318 —-0.212 0.212 0.318
1.0 0 4.338 4.345 0 0 0 0 0 0
2.0 0 4.417 5758 —0.275 0.275 0.729 —-0.275 0.275 0.729

50 —0.098 4.742 6.997 —0.606 0.606 2.005 —-0.606 0.606 2.005

Finally, we list in Table Il the minimum and maximum )
values and_? norms of the three component functions. As f &gl E(8)|*Pdé d d 4
expected, the componenk, and R; vanish whena=1. = =2 (15

=% T A
They increase in amplitude as tends to O or to infinity. f 1£(8)|2Pdé L(t) =1 A%(D)
Notice as well that the symmetry between ground states cor-
responding to reciprocal values af which we observed in

the two-dimensional case does not hold in three dimensioné» i Xo. andO satisfy the following system of equations:

L,
lll. SINGLE-PEAK SOLUTIONS | &4+ ZerGEHE-VE| +an

In order to study the asymptotic structure of blow-up so-

lutions numerically, it is necessary to use a method that +(1-a)T\E+]|&%6=0, (16)
evolves dynamically so that it captures the structure of the
solution near the blow-up point. One such method is dy- d\, _
namic rescaling12,13 (see Ref[3] for a review. We define g - @ik, =14 17
the rescaled variable€ (¢, ) by
— T _p-1
E(& =0 L(HEXD), =D H[x=Xo(1)], o omap 29 _co. 18
dr dr
t ds
i foLz(s)' (14) In Eq. (16), the scalar and tensor differential operatdrg

andI’, are given by
D(t) is ad-by-d matrix of the formD(t) =O(t) A(t), with
O(t) an orthogonal matrix and\(t) a diagonal matrix A =L%2A"2VV, T,=L2A"tvvAa~l (19
whose diagonal elements argt) (i=1, ... d). We takex,
to be the centroid of the2power of|E| for somep=1, and  Also, G=(g;;) andA=(a;;) ared-by-d matricesf is a vec-
we chooseD(t) andL(t) such that tor in RY, with

pf (8= &E)IEIPP M@ A\ E+(1— )T\ E]dé

ajj : (20)
[ER:
|
2NN o 2\7 o
0;i =0, gij:maij (i#]), f=B&—2p, by =ay;, bijzmaij (i#]), (22
(21 _ _
pf 8PP 2IM[ @l A p\E+(1—a)E-T \E]déE
. : : Bi= . (23
where B=(bj;) is an d-by-d matrix, B=(;) is a vector, |£]2°d
whose elements are given by 3
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TABLE IIl. Limiting value of a as a function ofe and initial

conditionEg.
(A p)=(1,1) (N, un)=(1,2) (N, un)=(1,3) @

a=0.5 0.905227 0.905223
a=1.0 0.917417 0.917417 0.917416
a=2.0 0.899349 0.899349 0.899348 0.8
a=5.0 0.851958 0.851958 0.851959
Notice that the equations faf and \; decouple from the 0.861
equations forxy, andO.

The numerical domain is the culje-L,L]% with some
sufficiently largeL, and the intervaJO,L] is divided inton 0.64]
equal subdivisions. The spatial differential operators are dis- '

cretized using finite differences, and a classical fourth-order 0 2 4 6 «
Runge-Kutta scheme is used for time integration. Spatial in-

tegrals are calculated using Simpson’s method. FIG. 3. Limiting value ofa=—LL, as a function ofa.

current form was unable to calculate the limiting behavior of
such solutions. They will be investigated further in Sec.

In this section, we consider the VNLS equation in three|y A in the two-dimensional case, with a different method.
dimensions. For all of the simulations, we used parameters Tg determine the nature of the dependence of the blow-up
L=10, n=30, andp=3, and discretized the spatial differ- rate on the parameter, we ran a series of simulations for a
ential operators using a five-point scheme. We performegyrge range of values af using an initial conditiorE, cor-
simulations with four different values of, namely, « responding to X,x)=(1,1), and calculated in each case
=0.5,«=1.0,@=2.0, and=5.0. For each of these values, ysing Eq.(27). In Fig. 3, we plot the observed value af
we used initial conditions againste. Notice thata attains its maximum value ai=1.

Referring to Eq.(14), we rewrite Eq.(25) in terms of the

(1,00, (24 physical coordinateg, t, andE as

A. Single-point blow-up in three dimensions

N
2 2 3
Eo(X1,X2,X3)=6 eXF( X1~ N2 42

with (A, 1) =(1,1), (\,x)=(1,2), and §,u)=(1,3). 1 _ . X
As t—t* (or the rescaled time goes tox), the rescaled  E(x,t)~ ———e(/2ANIC/—A| |
solution € stabilizes to the form 2a(t* —t) V2a(t* —t)
(28)
E& ) ~expioné(d), E0)=(c00), c>0,
25 . . . .
@9 whereA should identify with a solution of
where also the limiting frequency given by
— . i . 2 =
_ 1 d€(0,7) aAA+(1—a)V(V-A)+ia(A+(x-V)A)+|A|?A 0,29
w=lim Im E(0,7)|, (26) (29
| £(0,7)|? dr
stabilizes. The limiting value with a given by the observed rate computed in Eg7).
Figure 4 shows the contour plots |#| for a=5. On the left
, L?2[a;; ap, a
a=—lim—~ = Iim3—(—121 = —f) @) = o
el 80\ N2 \3 3

8

is computed for each simulation and is presented in Table IIl. 4
Note that it is independent of the initial condition, and that

for a=1 it is equal to 0.91%.. ., in excellent agreement
with the value obtained in the scalar ca4é]. -
No value is given fora=0.5 and {,u)=(1,3). This re- -8 -8
flects the fact that in this case the simulation broke down due
8 -4 0 4 8 31 -12 -8 -4 0 4 8 Ty

to the onset of splitting, a phenomenon in which an initially e
single-humped profile divides into two separate peaks as itS FIG. 4. Contour plots of rescaled profilé| for d=3 and a
amplitude increases. The dynamic rescaling method in its=5.0.
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TABLE IV. Limiting value of \(7) for various values of. TABLE V. Comparison ofL? and L* norms of A andR for
various values ofr.
Tmax A B C X
— R A
«=05 4000 3.28 3.9010° —3.07X10° 8.4x10 o - v, LZnorm L*norm LZnorm L* norm
=10 2000 3.19 1.0210° -2.86x10* 3.7x10°
a=2.0 1000 3.13 4.1210" -4.86x10° 3.4x10°7 05 1211 0.871 2.82 2.22 2.85 2.19
a=5.0 400 2.97 8.6810' —9.53x10° 2.7x10°° 1.0 1.000 1.000 3.42 2.21 3.45 2.18
20 0.871 1.211 3.98 2.22 4.04 2.19
50 0.799 1518 4.60 2.28 473 2.21

of the figure, we show a transverse viéa cross-sectional
view in thex,-x3 plang, while on the right we show a lon-
gitudinal view (a cross-sectional view in the,-x, or x;-x3  With 7; a sequence af values that tend t@y,,. The form of
plang. the function was chosen because it gave reasonable values
for the parameterA, B, andC, and was relatively insensitive
to the value ofr,,. Results for different values ot are
shown in Table IV. For=1 we compute a limiting value of

We now turn to the two-dimensional case. We used paa=3.19, which is in good agreement with the theoretically
rametersL =20, n=50, andp=3, and we discretized the predicted valueA= 7. The error termy was quite small
spatial differential operators using a seven-point scheme ifelative to the valuea=0.24 at the end of the simulation,
each direction. We performed a series of simulations withndicating that\ gpprol( 7) is @ close fit tok (7).
four different values Ofl, namEIy, 0.5, 1.0, 2.0, and 5.0, with We now turn to the Study of the ||m|t|ng prof|[é_ Using
the initial condition Eq. (14) to convert from rescaled to physical coordinates,
and eliminatingw by rescaling, we find that

B. Single-point blow-up in two dimensions

2

Eo(Xy,X,) =4 ex;{ —x3— %22- (1,0), (30)

E(x,t)~ %exp{i 0(T(t))]A(%,7), (33

for u=1, n=2, andu=3. We were able to continue the

simulations up to values of on the order of a thousand, at where

which time the amplitude of the solution in physical vari-

ables was greater than *00ur results are very similar to A(£7)= 1 2 &1 & (34
those obtained for the scalar critical NLS equation. The so- (&7)= Vo(7) \ yiJo(7) ’yzm’T '

lution stabilizes to the form

and the stretching factorg, and y, are given by

IR ()

&g n=exdib(n]EE ), &0,7)=(c,0), c>0,

oA As expected, the limiting values of; andy, were indepen-
WS::E thifpgogfft\ézn%S;ie;(r:re?oerg ilfeﬁlyé:h?na?ﬁglimret_ dent of Ey; they are listed in Table V for different values of
qt Y _onam, P T . By analogy with the scalar case, we exp&dbo coincide
dimensional case, did not approach a limiting constant bu

rather continued to vary extremely slowly, consistent with a,W'th the ground stat& corresponding to the value af used

. . . . 2 o
nearly self-similar behavior. We also compute the function' the S|mula_t|on. We list m_Ta_lbIe V the” andL™ norms of

7 A andR, which agree to within a few percent. The data for
a(7)=—L,/wL. As expecteda(7) was observed to decay

extremely slowly to zero. In analogy with the scalar case, W‘%Ziu%[rsoggfaiit:éeii gaé\(l:e I?ieg;grzifg fIré)TNéhelor}[uirr:wﬁirlcal
assume a decay rate of the form : . ple, p g.

5 the level curves ofA| and|R| for @=0.5.

T2
2

a(7)~ (32

In7+3Inin7’

with N depending ona. The function \(7)=a(7)(In7
+3Inin7) converges extremely slowly to some value. To ©
make this more precise, we fit this curve to the function
Nappro{ ) =A+B/ 7+ C/ 7%, where the parametess B, and

C are chosen to minimize P
3 a6 1 2 m 2 a8 1 2 =
n
X= \/E > [Napprof ) —N(1)]? FIG. 5. Contour plots ofA| (left) and|R| (right) for d=2 and
ni=1 ’ a=0.5.
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IV. TWO-POINT BLOW-UP FOR THE VNLS EQUATION

When performing simulations for values afsmall com-
pared to one, we encounter the phenomenon of splitting, in
which a solution with an initially single-peaked profile di-
vides into two separate peaks as its amplitude increases. To
capture the dynamics, we use a numerical method that con-
structs a curvilinear mesh that adapts dynamically to the
function as it evolves, by concentrating mesh points near
regions of high amplitude. It is a structured mesh generation
algorithm, and consists of constructing a time-dependent
transformation that acts on the spatial domBirand maps
the physical solutioft to a logical solutiorf. The number of
nodes is fixed and their locations change as the solution
evolves. The resulting mesh is nonuniform and, in particular,
the mesh lines do not intersect orthogonally. A detailed de-
scription of the mesh refinement method can be found in Ref.

T2

PHYSICAL REVIEW E 66, 036701 (2002

I

[8]. In Appendix A, we briefly recall the main ideas.

A. The casea=0.1

We apply mesh refinement technique to the cubic VNLS
equation in two dimensions, where splitting of the profile has

been observed for small values of the parameteWWe in-
troduce logical variable§=(&;,£,) andé=(&4,£,) and re-
write Eq. (2) in terms of the new variables and the coeffi-
cients a and bjj listed in Appendix B to obtain the
evolution equations

d&
dit1 =i(CT'011E1 + C1701281 + C5050E1 + €101 &4
+ 10281 + 01791165+ d1°0126,+ 4720555,
+ d%algz—i- di&252+ |g| 251)1 (36)
dé
dit2 =i(C3 01180+ C3201089+ €520 205+ €301,
+ €502+ 03191161+ d5°01261 + d5%0556,
+d301€; +d50,E1+[E]E), (37
where
cl=al+aadl, c\=al,+ca
1 11 22 1 11 22y
cl=al,+aay), ch=aj,+aay, (38)

di=di=2(1-a)al,, di=d,=2(1-a)al,.

The mesh refinement equations far, x,, and¢€ are iden-
tical to those in the scalar cafsee Eqs(A6)—(A8)] with ¢
replaced by¢.

We begin by running a simulation with=0.1 and the
initial condition

Eo(X1.,%2) =4 exp( —xi—x3)(1,0). (39

0.3474 |

1
immn
T
AT
v
s
T
/

0.347 111 I NN

i

-0.0002 ©

0.0002 I

(b)
FIG. 6. Mesh plots for two-point blow-up of VNLS equation
with «=0.1 at end of simulation.

We use the parametets=6, n;=n,=120, andM =3. For
the weight functional we found that it was necessary to in-
clude higher derivative terms in order to keep the logical
function £ well behaved, and so we took

wW(E)=5[(1+]|E|®+0.1]VVE|?)Y, (40)

with smoothing parametefsee Eq(A13)] s;=s,=12. The
incorporation of terms containing second derivatives of the
function is particularly important for simulations in which
the structure of the solution has a complex form.

The blow-up begins as in the scalar case, but after a short
time the peak becomes elongated and two subpeaks form on
either side of the main peak. These subpeaks gradually in-
crease in magnitude, while the main peak diminishes. Even-
tually, E forms two distinct peaks at the points {0;) with
¢c~0.3473, superimposed on a small shoulder component
that surrounds the peaks and attains its maximum at the ori-
gin. The amplitude then increases extremely rapidly as a por-
tion of the mass concentrates near each peak, while the re-
maining portion dissipates into the shoulder component. We
were able to continue the simulation up to a rescaled time
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FIG. 7. Two-point blow-up solution of VNLS equation wiia
=0.1 at the end of the simulatiorta) |£] along &, axis (logical

coordinate (b) |E| along thex, axis (physical coordinatgs
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2000
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(a)

40

60

[VE|Z,

4 x 108

2 x 108

PHYSICAL REVIEW E66, 036701 (2002

T2

0.3474

0.3472

-1 -05 0 05 &y

—-0.0002 0 0.0002 (a1

FIG. 9. Asymptotic form of two-point blow-up solution of the
VNLS equation witha=0.1.

7=73.1. At the end of the simulation the amplitude was ap-
proximately 8.2 10°, while the physical time was approxi-
matelyt=0.358 206. The mesh points at the end of the simu-
lation are plotted in Fig. 6. Profiles of the amplitude along
the x, axis at the end of the simulation in both physical and
logical variables are given in Fig. 7. In Fig. 8 we show the
evolution of the amplitude, gradient, and divergence as a
function of the rescaled time. We are also interested in
studying the behavior of the profile of the solution near each
peak close to the blow-up time. In Fig. (&ft) we show a
contour plot of|E| near one of the peaks at the end of the
simulation, while at the right we show a contour plot of the
amplitude|R| of the ground state corresponding do=0.1

(as computed in Sec. Il AThese plots are seen to be iden-
tical up to a uniform spatial dilation.

B. The limiting case: =0

Since the splitting phenomenon for the VNLS equation
appears to be correlated with small valuesagf we next
investigated the behavior in the limiting cage=0. The
equation witha=0 (but including an additional cubic non-
linear term also arises in modeling the dynamics of a small-
amplitude Alfven wave propagating in a plasma permeated
by an ambiant magnetic field 4] (see also Ref.15]).

In our calculations, we used the parametérs6, n;
=n,=120, toleranceM =3, and the weight functional

W(E)=9(1+|VVE[?)¥], (41
|V -Ef,
8 x 108
4 x 108
0
20 40 60 T 0 20 40 60 T

(b)

()

FIG. 8. Evolution of(a) |E| =, (b) |VE|52, and(c) |V-E|f2, as a function ofr for the VNLS equation witho=0.1.
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2 2
Blze IVE[Z. [V - Elz
10000
501
6.
40!
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301
5_
2000 20
41 0
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(a) (b) (c)

FIG. 10. Evolution of(a) |E| =, (b) |VE|f2, and(c) |V~E|f2, as a function ofr, for the VNLS equation withw=0.

with smoothing parameteis =s,=6. The dynamics of the the case where=0.1, the divergence actually decreases and
blow-up are different than those fer=0.1. The amplitude appears to approach a limiting value. The amplitude in-
begins to increase, and then almost immediately the profilereases extremely slowly and it is unclear whether or not it
splits into two peaks. Each of these peaks increases in angventually saturates. In Fig. 11 we show profiles of the func-
plitude very slowly, while the gradient increases much morejon along thex, axis at two points in the computation. On
rapidly. Eventually, two very sharp peaks with small ampli- the |eft we showE in physical coordinates, while on the right
tude are formed, as well as a number of cusps. The blow-Uge show the logical functiod. Notice thats remains fairly

is characterized by a gradient very large relative to the amg,,oth even afteE has become strongly peaked, although

plitude of the solution. The time step refinement proceduf%e resolution of the cusps was less effective than that of the

causes the time-step to decrease rapidly, and it becomes "Béaks. Nonetheless, the accurate conservation of the energy

practical to continue the simulation beyond this point. . . 4
; ) . . (the maximum relative error was aboux3a0™ *) suggests
In Fig. 10 we plot the evolution of the amplitude, gradi- . L
that the simulation is accurate.

ent, and divergence as a function of the rescaled time
Notice that although the gradient continues to increase as in

V. TIME DISPERSION NLS EQUATION

In this section, we apply the dynamic mesh refinement

Bl 4 el 4 algorithm to study the problem of the time dispersion NLS
\ \ equation(TDNLS)
2 2 ; 2 2
iU+ Uyt Uyy— €Uy + |u[?u=0, (42
1 1
0 0 which describes the motion of an ultrashort wave train emit-
(a) 2 0 1 2 7 (b) -4 2 6 2 4 7

ted by a laser as it passes through a nonlinear medium.

We will restrict our study to radially symmetric solutions
in the transverse plane. The dynamics of this problem have
&l 6 kl 6 been studied by several authors both analyticall§,17),
and numericallyf3,18]. Numerical simulations show that the
transverse focusing leads to splitting of the original pulse in

¢ ¢ the t direction, although further conclusions about the dy-
namics could not be established. Using an adaptive mesh
5 2 refinement scheme, Germaschewestkal.[19] observed that,
after the first spitting, each peak may undergo in some cases,
J M sequential divisions near the outer edge of the pulse. Our
© T m () e T T s calculations seem to confirm these observations as well as

new computations by Fibiclket al. [6]. Transforming from
FIG. 11. Profiles of the solution of VNLS equation with=0  physical coordinatesu(r,t) to logical coordinatesd,p, ),
along thex, axis. Eq. (42) is rewritten in its radial form
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FIG. 12. Profiles of the solution of TDNLS equation aldraxis
for e=1 andug=6 exp(r2—t?).

¢=1

r(p,7)

11 12
+Cor(p,7)d 0]~ 62(a22(9pp()0 +2835, ¢

(c1d,+Crd)[Cal (p,T) I,

+a§§(977¢+b%2(9pq0+b§2(97@)+|(,D|ZQD ’ (43)

where
71 dt B 1 ot 7&r Jt  ar Jdt 44
“=35 2773 ap’ Cdp It It dp’ (44

anda;{| andbj; are the coefficients given in Appendix A with
X1,X2,&1, and &, replaced byr,t,p, and 7, respectively.
We first considered the problem correspondingetol
with isotropic initial condition
Ug(r,t)=6 exg —r?—t?), (45)

as studied in Sec. 9.2 of RéB]. For our parameters we take
L=6,n,=160n,=200M =3, and we use the weight func-
tional

w(u)=9(1+|VVu|?e], (46)

with smoothing parameters =16 ands,= 20.

The dynamics of this problem are more complicated than
those of previous simulations. As in the case of the VNLS

equation with smalkx we observe splitting, but the onset of

PHYSICAL REVIEW E66, 036701 (2002

u
ful [Vul2,

800
6 x 10*
600
4x10%
400

4
200 2x 10

20

(b)

FIG. 13. Evolution of amplitude and square of the gradient of
the L2 norm for TDNLS equation fore=1 and uy,=6 exp(r?
—1?) as a function of.

40 60 ¢

elongated in the direction; indeed at this point the contours
of |u| are about 50 times as long in theirection as in the
direction. Only at this point does splitting begin to occur, and
two distinct peaks eventually form. Both of these peaks are
also extremely elongated in thelirection. In addition to the
main peaks, there are a series of local undulations in the
cross-sectional profiles of the amplitude parallel totthgis.
These undulations gradually become more and more compli-
cated, until finally a second splitting of the main peaks be-
gins to occur. By this point the amplitude has saturated, after
attaining a maximum of about ¥0and begins to decrease
gradually.

80

[l

20 Jul

40

0
(a) -2 -1 0 1 t -08 -04 0 0.4 b1

60
|ua
lul

80 40

40 20

R

-04 -02 O

H

(d) -04 02 0

h

0.2 t

N

0.2 T

()

splitting is much more delayed. The solution begins to de-

velop with a profile consisting of a single peak, which

FIG. 14. Profile of|u| alongt axis for TDNLS equation folk

reaches an amplitude of about 150. This peak is extremely: 7 andu,=3.5 exp-r2—t?).
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In Fig. 12 we show profiles of the solution along thexis 1 08\ 2
for two values ofz in both physical and logical coordinates. Iw(é)= 5 > (—') d (A1)
As can be seen, the mesh transformation is able to resolve pw?(x) T] 19X

the extremely high gradients associated with the shocks on ) N
either side of the main peaks. We also show in Fig. 13 th&®n€ Seeks function, (x ,x;) and&;(xy,x;) that minimize

evolution of various quantities associated with the solutionl w Subject to the constraini&(x,,xz) =x;, i=1,2 ondD.
as a function of the rescaled distan¢e defined by ¢ For this purpose, one writes the associated Euler-Lagrange

=fé|u(z’)|fmdz’, and analogous to the rescaled timeon- equations (=1.2),

sidered earlier.

Next, we consider the problem correspondingete0.25 Li(§1'§2)5i< 1 ‘?_‘fi>+i( 1 a_gi)zol
with initial conditionug(r,t) = 3.5 exp-r2—t?), which, up to Xy \ w2(x) 9X1) Xz | w?(x) 9%z
rescaling, is identical to that studied in R¢L8]. We use (A2)

parametersL=6,n;=120n,=240M=2.5, and the same ) o )
weight functional as before with, =12 ands,=24. In Fig. The systemA2) has the form of a pair of elliptic equations
14 we show a series of profiles jof| for various values of.  fOr £1(X1,Xz) and&a(xy,x;). A straightforward way to solve

As with the first simulation, the dynamics of this problem this system numerically is to consider the associated evolu-
appear to be quite complicated. The blow-up begins with 40N equationsd¢;/ds=L;(¢1,&>) for which the solution to
Gaussian-like profile, which quickly becomes highly elon-EQ- (A2) is a fixed point. To test the effe_ctweness of.th|s
gated in the direction. In the regiom >0, a splitting begins Method, Ren and Wan&] performed a series of numerical

to form, which gradually penetrates the peak until it reache§|mulatlon§ and also use the Wl_nslow algorithm |ter_at|vely_t_0
the t axis. The amplitude then increases in a two_peake(!pte_g_rate_tlme-dependent equations that develop singularities
profile, while further subdivision occurs away from the N finite time. _

axis. The rate of blow-up decreases until a saturation point is Here, we develop an approach that incorporates some of
reached at an amplitude of about 143. The amplitude the1® above ideas. Rather than proceeding from a variational
begins to decrease and further subdivision of the peaks o@PProach, we picture the mesh as a grid of weighted nodes
curs, until eventually two shocks form outside the mainConnected by springs, a concept also discussed in a different
peaks. As the amplitude continues to decrease, multipleontextin Ref[24]. A detailed description of the method is
shocks form and the dynamics become extremely complidiven in Ref.[8]. Let the mesh consist of a rectangular grid
cated. At this point, however, the simulation is at the limit of 0f nodes N;,; situated at physical positionsx; ;

its validity, and due caution should be exercised when inter=((X1)i,j,(X2); ;) in which each node is connected to its four
preting these results. closest neighbors by a spring. Each spring exerts a force on

the two nodes at its end points, which is given in magnitude
by the spring tensiok multiplied by the distance between
ACKNOWLEDGMENTS the nodes, and directed along the line of the spring. The

' ) , ) , ) constantk is different for each spring, and is determined as
We benefited from stimulating discussions with R. RUs-¢51ows. Each nodeN; ; has associated with it a positive

sell. We acknowledge support from NSERC Operating Gra”%eightwi /=w(x;;) wherew is a weight function. The ten-

No. OGP0046179. sion constant associated with each spring is then defined to
be the arithmetic average of the weights of the two nodes
that it connects. For example, the spring connecting node

APPENDIX A: A DYNAMIC MESH N; | to nodeNiH,j exerts a force

REFINEMENT TECHNIQUE

Suppose that:D=[ —L,L]?>—C, andu vanishes owD.
We define logical coordinates=(£4,£,) on D, and mapD
onto itself by a smooth invertible transformation
(é1,&)<(X1,Xp) and the logical functiong:D—C by on nodeN;;, and an equal and opposite force on node
0(&)=u(X1(£1,£2),X2(€1,£5)). The problem is how to con- Ni ;. If the mesh is to be in equilibrium, then the net force
struct the transformation so that is as well behaved as on each node from the four springs attached to it must van-
possible. A comprehensive overview of various approacheish; in other words, we must have
can be found in Refs[20,21]. All these methods have in
common the concept of a weight functional whose value (Wi j Wi 1) (Xis 1 =X j) + (Wi j+Wi—15)(Xi— 1 =X j)
provides some indication of the relative concentration of
mesh points necessary in a region in order to madatcu-
rately. For example, a simple choice for a weight function is + (Wi j+ Wi - 1) (X j—1— %)) =0. (A4)
w=1+|u|?. An important class of algorithms is composed
of those which define the transformation in terms of a variaNow expand all of the quantities above in a second-order
tional problem(see Ref[22] or Chap. 6 of Refl20]). One of ~ Taylor expansion about the nodlg ;. Equating coefficients
the most useful, first proposed by Winsl¢@@] in the con-  of h?, and separating int®; andx, components, we get the
text of an adaptive finite element algorithm, is given by  pair of equationsi(=1,2)

1
F:E(Wi,j+Wi+1,j)(xi+1,j_xi,j) (A3)

(Wi j+Wi ) (X jr1—Xij)
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proach is to incorporate the time evolution directly into the
mesh evolution equations. Such methods are known as mov-

Al S ing mesh methods and are discussed in detail in R2&-
iR 27]. A second approach, taken in this work, is to decouple
2mn the time-dependent problem into two steps, one in which the
fhs i mesh is fixed and the solution evolves in time, and the sec-
0 : : ond in which time is held fixed and a static mesh generation
ot scheme is applied to the current value of the solution.
; i Let us illustrate it on a model problem, the critical NLS
a4 equation in two dimensions,
S enERESE du_ [(é°u Pu
-6 4 2 0 2 4 m i i 5X%+ 5X§ +|ul u), (A10)

FIG. 15. Curvilinear mesh induced
ny with initial condition u(x,0)=uq(x)=4 exp(|x|?). At t

=0, we initialize the mesh transformation to the identity, and
—t+ =t — = -+ — —|=0. ¢=Uy. The method consists of alternating between evolution
9&y  9&; W\ 0& 9& 9&; I&; and mesh generation phases. During the evolution phase, the

(AS)  x,(&,,&) are held constant, and is allowed to evolve in
time. The evolution equations are determined by rewriting
the spatial derivatives appearing in E410) in terms ofé;

X, % 20w ax; W X
Li(Xq,X2)= =

To solve Eq.(A5), we consider the evolution equations for

X1, Xo, and e in the form and &,:
2.
dXi 2 2
—= = Li(X1,%2), (A6) U _ k_9°¢ n e
ds IXioX; kI & 960§ N ag’ (A1D)
d_‘P:Xla_‘P+X2‘9_9°, (A7) The c_oef_ficientsa!‘j' and bf; are calculated in Appendix B.
ds 23 dé; Substituting Eq(A11) into Eq. (A10) we obtain the evolu-
tion equation
where
de
_ 1o dx 09X, %) azl[(aﬁ* a3;) dye+2(ars+azy) die+ (alT+ass) e
173\ 9¢, ds 9¢; ds)’ Lo - ,
+ (b1t b3y 1o+ (b3+b2) dre+ [0l e], (A12)
1%y dxp;  dxq dxg A8 o ) )
2=3\7¢, ds ~ 3%, ds)’ (A8B)  for ¢, whered; denotes derivative with respect &. Since

the mesh is fixed during this phasg, andx, remain con-

and J is the Jacobian of the mapping(&,)—(xi,x,).  Stant as do the coefficienas' andby; . Now we calculate;
These equations are similar to the moving-mesh equatior@ndX; from (A6)—(A8) and compare their vector norm with
developed in Refd[25,26. Also, it follows from Eq.(A8)  some fixed toleranc®>0. If |(Xy,X;)| =>M we perform

that a mesh refinement step, while [ifX;,X,)| <M we per-
form an evolution step. We then compute and X, again
dx; X X and repeat the procedure. Since each mesh refinement step
ds 1(9_51+ 293¢, (A9)  tends to decreagé€X;,X,)| = and each evolution step tends

to increase it, we soon reach an equilibrium state in which

Equations(A7) and (A9) constitute a set of three first-order |(X1,X2)| = hovers very close t¥ and mesh refinement and
equations forx; ,x,, and ¢, and clearly all have the same €volution steps alternate rapidly with one another.
characteristic curves iBx[0]. In all cases, we discretized the spatial differential opera-
To visualize the method, we consider an example of mesfors using a seven-point scheme in each direction, while the
generation. LetD=[—6,6]2> with a 2n-by-2n grid (n tempo_ral discretization was performed using a va_rlable time
=120), and the test function be given by(x;,x,) Step fifth-order Runge-Kutta-Fehlberg scheme with an em-

=4 exp(-x2—x3/4). We construct a transformation, that in- Pedded fourth-order error estimate.
duces physical coordinate functiorngé,,&,) on D. Each of We use parameters =6, n;=n,=120, and tolerance

the regularly spaced mesh poings; is mapped to a new M=2. We first define a smoothing operatgrLet f=f;;,

mesh pointx; ;, and this new set of mesh points defines a_N1=I=N1, ~N;=<]=<n, be any function defined on the
curvilinear mesh o which is adapted to the functian as  !0gical mesh, anc(f) defined by
in Fig. 15.

We now extend the static mesh generation scheme to a (S(F));j= 2 Cedifitkjris (AL13)
method suitable for solving dynamical equations. One ap- lkl<sy.lll<s;
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Ta N
1077 :
3x 107 1
|ul 0
2 x 107 -1077 :
. i
10 -1077 0 1077 =1
FIG. 17. Closeup view of mesh near the blow-up point.
To 1
equation, the solution has a relatively simple structure, so
0 for this simulation we tookc;=c,=0 with smoothing pa-
rameterss;=s,=6.
—4x 1077 We were able to perform the integration upte 177.3,

where we recall that the rescaled timeis defined by~
=f5|u(s)|ﬁxds. This corresponds to a physical time
=0.145443. At the end of the simulation, the amplitude was
approximately 3.6 10" and the time steplt was approxi-
mately 7.0< 10”1’ The mesh spacing at the origin was about
10"8, an increase in resolution of about<a(® over the

FIG. 16. Single-point blow-up solution of NLS equation: sur-
face plot ofu.

wheres; ands, are non-negative integers andandd, are
weights given by a binomial distribution,

| | initial grid.
Ck:% # |=% % In Fig. 16 we show surface plots of the solution in physi-
2251 (81— K)!(s1+K)! 2252 (S;= (s + D! cal coordinates, while in Fig. 17 we show plots of a blow-up

(A14)  view near the origin.

The formula in Eg.(A13) is valid for —n;+s;<i=<n;

—s,, —N,+S,<j<n,—Ss,. For points near the boundary, it APPENDIX B: COEFFICIENTS FOR PARTIAL

is modified by extrapolating to fictitious points outside the DERIVATIVES IN CURVILINEAR COORDINATES
integration region. The parametexsands, control the de-
gree of smoothing; fos; =s,=0 the operatoBis simply the
identity. In effect,S performs a convolution of with a dis- 5 5
crete approximation of a Gaussian centered at the origin. We Ju =g« e

used this smoothing operator in all of our simulations, and axiox; ) 9&dé
found that it greatly increased the smoothness of the mesh

near the singularities, which resulted in improved stabilitywherex, =x,(&;,&,), andx,=X,(&,,&,), are curvilinear co-

The coefficientsaf| andbjj associated with the formula

k 9¢
Yog’

+b (B1)

and accuracy. ordinates given by
We now consider the problem of choosing an appropriate
weight function. We will consider weight functions that de- 1 (ox,)2 1 (6%, 9%,
pend only on the value afi and its first- and second-order a}}=—2<—) , anp=-— —2<— —)
partial derivatives. Notice that these derivatives are com- 7108, I\ 08, 98,
puted relative to the physical variabkeand not the logical
variableé&. In order that the volume under the surface of the w L(dx\2 1 (axgdx,
function be equidistributed with respect to the new coordi- an= 2 9&,] 4=~ 32 &, 9E;)" (B2)

nate system, it is desirable to have a mesh spacing that is
roughly proportional to the value ¢fi| ~1. For example, one

can choosew(u)=(1+|ul?)¥2 To extend this result to bl 1 &i(i&) _ﬁi(l %) (B3)
weight functionals that include higher-order derivative terms, Y306, 081\ 3 98, 9€1 9E2\ 3 98, |
we note that for a self-similar blow-up solutigmi(t)|, =
~L7Y(t), [u(t)|=~L2(t), |giu(t) | =~L3(t). In order , L[axy 0 [1ox) 9%y 9 13X,
to have a weight function in which all terms remain of equal b1i=73 9, 5_52(3 (9—51> ", (9—51(3 0_§1> ., (B4)
order asL (t)—0, we definew as (c;,c,=0)

W(u) = S[(1+ [ul®+ ca| gul+ el u[H Y], (ALS) T i(ﬁ %) alz_i(ﬁ% ﬁ&)

12002\ 08, 08,) TV 0P\ 08 08, 0&, 0&,)”

This is the form ofw that will be used for all of our simula-
tions. In the case of single-point blow-up for the scalar NLS (B5)
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